Tugas Akhir/Proyek Akhir
klasifikasi pola sidik jari mengunakan jaringan saraf tiruan radial basis function
Biometrik merupakan metode pengenalan identitas seseorang berdasarkan karakteristik fisik manusia misalnya wajah, sidik jari, struktur telapak tangan, letak retina mata, dan suara. Identifikasi biometrik yang umum digunakan saat ini adalah pengenalan sidik jari.Setiap orang memiliki karakteristik yang berbeda-beda. Karakteristik tersebut bisa timbul karena faktor eksternal (lingkungan), atau bisa juga berasal dari faktor internal (pewarisan). Pola sidik jari dibagi ke dalam lima kategori, yaitu: Whorls, Right Loops, Left Loops, Arch, dan Tented Arch. Salah satu teknik pengenalan pola (sidik jari) adalah dengan jaringan saraf tiruan. Penelitian ini mengembangkan jaringan saraf tiruan RBF (Radial Basis Function), yang dikenal sebagai SLFNs (Single Hidden Layer Feed-forward Neural Networks) yang handal dalam pengenalan pola. Penggunaan algoritma ELM (Extreme Learning Machine) pada jaringan RBF merupakan salah satu alternatif untuk menghindari adanya komputasi yang lama karena tidak adanya penyesuaian bobot selama proses training sehingga waktu komputasi berlangsung relatif lebih singkat. OLS (Orthogonal Least Square) digunakan untuk optimalisasi bobot dan penyederhanaan jaringan RBF. Sebagai proses pengolahan awal citra sidik jari dilakukan proses normalisasi grayscalling, perataan histogram, dan operasi blok. Metode ekstraksi fitur ciri yang digunakan berbasis orientasi arah dominan citra. Satu citra sidik jari diwakili oleh 256 nilai sudut dominan dalam satuan radian. Dari hasil uji coba program menunjukkan bahwa ELM-RBF dan OLS dapat mengenali pola sidik jari dengan akurasi 100% pada proses training dan 75% pada proses testing.
Tidak tersedia versi lain